

Indirect Searches for Dark Matter with the Fermi Large Area Telescope

Andrea Albert
(The Ohio State University)
on behalf of
The Fermi LAT Collaboration

"LHC Now" Santa Fe 2012

Outline

Dark Matter Overview

The Fermi Large Area Telescope

Recent Results

Outline

Dark Matter Overview

The Fermi Large Area Telescope

Recent Results

Astrophysical Evidence for Dark Matter

- Majority of mass in galaxies is dark
 - Coma Cluster + Virial TheoremF. Zwicky (1937)
- Dark Matter clumps in large halos around galaxies
 - Galactic Rotation Curves
 V. Rubin et al (1980)
- Dark Matter is virtually collisionless
 - The Bullet ClusterD. Clowe et al (2006)
- Dark Matter is non-baryonic
 - CMB Acoustic Oscillations
 WMAP (2010)

WIMPs detectable by Fermi LAT

- Weakly Interacting Massive Particle (WIMP)
- GeV-TeV mass scale
- Assume: Can annihilate or decay into SM particles
- Assume: Accounts for measured DM density
- Ex) Neutralino
 - Predicted by many SUSY models
 - Electrically neutral
 - LSP → stable particles
 - GeV-TeV mass

WIMPs as a Thermal Relic

- If WIMP was a thermal relic, then it was in creation/annihilation equilibrium in early universe
- Once universe cools enough, amount of dark matter freezes out
 - No longer created, and expansion causes annihilation rate to drop to ~0
- Assume weak scale $\sigma_{ann} \rightarrow$ observed abundance (~23%)
 - $\langle \sigma v \rangle_{ann} \sim 3e-26 \text{ cm}^3/\text{s} (\sigma_{ann} \sim 3 \text{ pb})$
 - $v_{CDM} \sim 0.3c$
 - Virial theorem -> to form stable halos around galaxies, DM particle should be non-relativistic (cold dark matter)

How to Detect WIMPs

How to Detect WIMPs

- WIMP annihilation or decay can produce a variety of detectable SM particles
- Goal is to detect these particles and disentangle intrinsic WIMP properties

What we observe

$$\Phi_{\chi}(E,\psi) = \frac{\langle \sigma_{\chi} v \rangle}{4\pi} \sum_{f} \frac{dN_f}{dE} B_f \int_{LOS} dl(\psi) \frac{1}{2} \frac{\rho(l)^2}{m_{\chi}^2}$$

DM Flux (events/cm²/s)

Region of Interest (ROI) (dwarf galaxy, the whole sky, etc)

Intrinsic Particle Properties

$$\Phi_{\chi}(E,\psi) = \frac{\langle \sigma_{\chi} v \rangle}{4\pi} \sum_{f} \frac{dN_{f}}{dE} B_{f} \int_{LOS} dl(\psi) \frac{1}{2} \frac{\rho(l)^{2}}{m_{\chi}^{2}}$$

Annihilation Cross Section * velocity (v ~ 0.3c)

 $\langle \sigma v \rangle_{ann} \sim 3e-26 \text{ cm}^3/\text{s} (\sigma_{ann} \sim 3 \text{ pb})$

Note: large fraction of predicted gamma's have $E_{\gamma} < m_{DM}$

Gustafsson et al. PRL 99.041301

Astrophysics

$$\Phi_{\chi}(E,\psi) = \frac{\langle \sigma_{\chi} v \rangle}{4\pi} \sum_{f} \frac{dN_f}{dE} B_f \int_{LOS} dl(\psi) \frac{1}{2} \frac{\rho(l)^2}{m_{\chi}^2}$$

J-factor – Line of sight integral over a ROI

Credit: Springel et al. (Virgo Consortium)

Astrophysics

$$\Phi_{\chi}(E,\psi) = \frac{\langle \sigma_{\chi} v \rangle}{4\pi} \sum_{f} \frac{dN_{f}}{dE} B_{f} \int_{LOS} dl(\psi) \frac{1}{2} \frac{\rho(l)^{2}}{m_{\chi}^{2}}$$

"J-factor" – Line of sight integral over a ROI

Various models for the smooth DM density as a function of distance from galactic center (r) Derived from fits to N-body simulations

Outline

Dark Matter Overview

The Fermi Large Area Telescope

Recent Results

Fermi Large Area Telescope (LAT)

- On board the Fermi Gamma-ray Space Telescope
 - Launched June 11, 2008
 - Started taking data Aug 2008
 - 5 year mission
 - Hope to run for 10 years

Large Area Telescope (LAT)

Observes 20% of the sky at any instant, views entire sky every 3 hrs
20 MeV - 300 GeV - includes unexplored region between 10 - 100 GeV

Gamma-ray Burst Monitor (GBM)

Observes entire unocculted sky

Detects transients from 8 keV - 40 MeV

Gamma Ray Pair Conversion

Energy loss mechanisms

Fig. 2: Photon cross-section σ in lead as a function of photon energy. The intensity of photons can be expressed as $I = I_0 \exp(-\sigma x)$, where x is the path length in radiation lengths. (Review of Particle Properties, April 1980 edition).

Opening Angle

$$heta_{Open} pprox rac{4m_e}{E_\gamma}$$

At 100 MeV $\theta_{Open} \sim 1^{\circ}$

Fermi LAT

Tracker (TKR):

18 Si bi-layers

Front- 12 layers (~60% X_o)

Back- 6 layers (~80% X_o)

Angular resolution ~2x better for front Many EM showers start in TKR

Anti-Coincidence Detector (ACD):

 $\varepsilon = 0.9997$ for MIPs

Segmented: less self-veto when good

direction information is available

Calorimeter (CAL):

8 layers (8.6 X_o on axis)

ΔE/E ~ 5-20% Hodoscopic, shower profile and *direction* reconstruction above ~200 MeV

Trigger and Filter

Use fast (~0.1 μs) signals to trigger readout and reject cosmic ray (CR) backgrounds Ground analysis uses slower (~10μs) shaped signals

Fermi LAT Effective Area

18

- < 100 MeV limited by 3 in-a-row trigger requirement
- > 100 GeV limited by backsplash
- See arXiv:1206.1896 for more info on Fermi LAT performance/validation

Fermi LAT Point Spread Function (PSF)

- Limited by multiple scattering at low E
- Limited by strip pitch at high E (pitch = 228 µm)
- See arXiv:1206.1896 for more info on Fermi LAT performance/validation

Fermi LAT Energy Dispersion

- Limited by energy loss in tracker at low E
- Limited by leakage and CAL saturation at high E
- See arXiv:1206.1896 for more info on Fermi LAT performance/validation

Fermi LAT Gamma-ray Sky

1 year all sky map (E > 1 GeV)

Fermi LAT Gamma-ray Sky

3 year all sky map (E > 1 GeV)

7/12/2012

Fermi LAT Gamma-ray Sky

Nature has given us a rich and complicated gamma-ray sky!

Outline

Dark Matter Overview

The Fermi Large Area Telescope

Recent Results

7/12/2012

Dark Matter Searches with the Fermi LAT

25

Unexpected Excess in the Cosmic Ray e± Spectrum

- ATIC observed an unexpected bump in the CR e± spectrum
- Fermi observes a broader excess around the same energy
- This feature can be accounted for by adjusting the CR injection spectrum or nearby pulsars
- Has been explained with leptophillic DM annihilation models
 - Requires large <σv>_{ann} to explain excess

Fermi electron + positron spectrum

Ackermann et al. [Fermi LAT Collaboration] 2010

26

Unexpected Rise in local CR Positron Fraction

- Fermi measures a rise in the local highenergy CR positron fraction, consistent with the PAMELA results
- No magnet on-board, so use Earth's magnetic field
- Rise in local positron fraction disagrees with conventional model for cosmic rays
 - Local positrons are secondaries created by CR nuclei interactions (this should cause fraction to *decrease*)
- This can be explained with leptophilic annihilating/decaying DM
 - Requires large $\langle \sigma v \rangle_{ann}$ to explain excess
 - Antiproton fraction does not rise; need to suppress hadronic modes
 - see T. A. Porter et al. (2011)
 arXiv:1104.2836v1; D. Grasso et al. (2009)
 arXiv:0905.0636v3 for more

Fermi positron fraction

DM Constraints from the Milky Way Halo

- Look in 2 year diffuse from 1 100 GeV
 - Mask out known gamma-ray sources
- Region of Interest: two off-plane rectangles (5°<|b|<15° & |I|<80°)
 - Minimizes DM profile uncertainties (central cuspiness varies)
 - Limits astrophysical uncertainties (mask bright plane, avoid high latitude Fermi lobes and Loop I)
- This analysis focuses on setting limits on possible DM signals
 - See non-DM like residuals (e.g. not centrally peaked)
 - DM search in MW Halo is ongoing

DM annihilation signal

Halo Method I – "No-background" Limits

- Conservative
 - Method II w/detailed bkg modeling on next slide
- No non-DM background modeling
 - Robust to many uncertainties
- Expected DM counts (n_{DM}) compared to observed counts (n_{data}) and 3σ and 5σ upper limits are set using

$$n_{DM} - 3(5)\sqrt{n_{DM}} > n_{data}$$

in at least one energy bin

Halo Method II - Limits + Bkg Modeling

- Profile likelihood fit combining several GALPROP diffusion models with DM
 - Derives DM limits marginalized over astrophysical uncertainties
- Allow several bkg parameters to vary
 - CRE injection index, diffuse halo height, gas (HI) to dust ratio, CR source distribution, local H₂ to CO factor, and isotropic normalization
- Distribution of CR sources is uncertain, so left free in radial Galactic bins.
 - To be conservative to DM constraints,
 CR source distribution set to zero in the inner 3 kpc
- Maps of each GALPROP + DM model are made and fit to the Fermi LAT data, incorporating both morphology and spectra

MW Halo Results- bb

31

• bb annihilation spectrum is similar in shape to DM annihilations/decays producing heavy quarks and gauge bosons in this energy range

MW Halo Results- μ+μ-

- Set limits assuming only Final State Radiation and FSR + Inverse Compton
 - Only FSR = only photons produced by muons (no electrons)
 - "FSR + IC" includes IC gamma rays from electrons produced via DM annihilation/decay
- Contours show 2σ and 3σ CL fits to PAMELA (purple) and Fermi (blue) positron fraction
 - DM interpretation of positron fraction strongly disfavored (for annihilating DM)

MW Halo Results- T+ T-

- Set limits assuming only Final State Radiation and FSR + Inverse Compton
 - Only FSR = only photons produced by muons (no electrons)
 - "FSR + IC" includes IC gamma rays from electrons produced via DM annihilation/decay
- Contours show 2σ and 3σ CL fits to PAMELA (purple) and Fermi (blue) positron fraction
 - DM interpretation of positron fraction strongly disfavored (for annihilating DM)

Constraints from dwarf galaxies

- Dwarf galaxies have a large mass-to-light ratio
- Good signal-to-noise for a DM search

Combined dSphs Results

- Joint likelihood analysis of 10 dwarf galaxies
- 2 years of data in energy range 200 MeV – 100 GeV
- Account for uncertainties in J-factor
 - DM distribution determined using observed stellar velocities
- 4 annihilation channels considered
- No DM seen
 - Exclude canonical thermal relic crosssection for masses less than ~30 GeV (in bb and tau's)

Combined dSphs Results

Edition February Febr

- Joint likelihood analysis of 10 dwarf galaxies
- 2 years of data in energy range 200 MeV – 100 GeV
- Account for uncertainties in J-factor
 - DM distribution determined using observed stellar velocities
- 4 annihilation channels considered
- No DM seen
 - Exclude canonical thermal relic crosssection for masses less than ~30 GeV (in bb and tau's)

Projected Limit Improvement with dSphs

Gamma-ray Anisotropies

Gamma rays from Galactic DM

- Study the Isotropic Gamma-ray Background (IGRB)
 - Composed of unresolved sources from various classes (blazars, starforming galaxies, MSPs, dark matter, ...)
- Galactic DM subhalos (clumps of DM) may not be resolved by the LAT, but may be detected via anisotropy signature
 - Simulation above is one of several realizations, we don't know where the subhalos actually are

Constraints from Observed Anisotropy (1)

- ROI = ±30° off plane, mask out known sources
 - Look at whole dataset (DATA) and dataset minus Galactic Diffuse model (DATA:CLEANED)
- Measure the IGRB angular power spectrum in 4 energy bins from 1-50 GeV

$$I(\psi) = \sum_{\ell,m} a_{\ell m} Y_{\ell m}(\psi)$$
 $C_{\ell} = \langle |a_{\ell m}|^2 \rangle$

- For 155 < l < 504, angular power is roughly constant in multipole in all four energy bins
 - Poisson-like, characteristic of unclustered point sources
 - Constrains DM subhalo models

1 - 2 GeV Angular Power Spectrum

Ackermann et al. [Fermi LAT Collaboration] 2012 (to appear in PRD)

7/12/2012

Constraints from Observed Anisotropy (1)

40

- Angular power spectrum analysis of the isotropic gamma-ray background (IGRB) found a $>3\sigma$ detection of angular power up to 10 GeV (lower significance measure at 10-50 GeV bin)
- Observed fluctuation angular power is roughly constant from 1-50 GeV
 - Well described by coming from single source class with spectral index Γ = -2.4 \pm 0.07
 - Constrains some DM subhalo models
- Can constrain fractional contribution of individual source classes to the IGRB intensity

Ackermann et al. [Fermi LAT Collaboration] 2012 (to appear in PRD)

Constraints from best-fit constant fluctuation angular power (1 > 150) measured in the data and foreground-cleaned data

Source class	Predicted $C_{100}/\langle I \rangle^2$ [sr]	Maximum fraction of IGRB intensity	
		DATA	DATA:CLEANED
Blazars	2×10^{-4}	21%	19%
Star-forming galaxies	2×10^{-7}	100%	100%
Extragalactic dark matter annihilation	1×10^{-6}	95%	83%
Galactic dark matter annihilation	5×10^{-6}	43%	37%
Millisecond pulsars	3×10^{-2}	1.7%	1.5%

Search for Gamma-ray Spectral Lines

Gustafsson et al. PRL 99.041301

- Annihilation/decay directly into $\gamma\gamma$ or $X\gamma$ (X = Z^0 , H^0 , ...)
- "Smoking Gun" channel
- Advantage: sharp, distinct feature
- Disadvantage: low predicted counts

Fermi Line Search

2 yr Analysis ROI

LAT energy response to 100 GeV Line

- Model energy dispersion using full detector GEANT simulation
- ROI = 10^o off plane + galactic center (mask out known sources)
- Likelihood fit in sliding energy windows
 - Assume single power-law background
 - Background spectral index and DM signal fraction free to vary in each window

Fermi Line Search Constraints

Annihilation cross-section constraints

Ackermann et al. [Fermi LAT Collaboration], accepted to PRD

- No lines detected in the 2 yr analysis
- Follow up analysis is ongoing
 - More data
 - **Exploring ROI optimization**
 - Design better E_{disp} model
 - In-depth exploration of 130 GeV claim

DM Line at 130 GeV?

- Feature found in gamma-ray spectrum at ~130 GeV
 - Bringmann et al. find weak indication that feature is consistent with internal brem. emission from DM annihilation
 - Weniger claims a tentative gamma-ray line
- Feature seems to come from galactic center
 - Slightly offset though
- In-depth Fermi investigation is ongoing
- See also: Bringmann et al. arXiv: 1203.1312;
 Weniger arXiv: 1204.2797; Tempel et al. arXiv 1205.1045; Boyarsky et al. atXiv:1205.4700;
 Geringer-Sameth & Koushiappas arXiv: 1206.0796; Su & Finkbeiner arXiv: 1206.1616;
 Aharonian et al. arXiv: 1207.0458

DM Line at 130 GeV?

- Profumo & Linden show how a broken power-law source could produce a line-like feature
 - Non DM astrophysical sources can produce such a break
- Aharonian et al. argue that a cold ultrarelativistic pulsar wind could produce a line-like feature
- May be an instrumental or reconstruction issue
- Many unresolved questions remain so stay tuned!

Profumo & Linden 2012

Summary

- The Fermi LAT has placed strong constraints on dark models from null detections in several indirect DM searches
- Searches in the Milky Way Halo and Dwarf Galaxies have excluded the canonical thermal relic cross-section for masses less than ~30 GeV (in bb and tau annihilation channels)
- Searches in the Milky Way Halo have also strongly disfavored DM models explaining the electron-positron anomalies
- Sensitivity of the LAT is expected to keep improving
 - Improved understanding of astrophysical background
 - Increased exposure
 - Improvements in analysis and understanding of detector response
- Current searches are already exploring interesting parts of DM phase space and will just keep getting more sensitive; stay tuned for more exciting Dark Matter results from the Fermi LAT!

Fermi LAT Collaboration References

- For a list of Fermi LAT collaboration publications
 - see http://www-glast.stanford.edu/cgi-bin/pubpub
- "The Fermi Large Area Telescope On Orbit: Event Classification, Instrument Response Functions, and Calbration
 - arXiv: 1206.1896
- "Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV"
 - arXiv: 1008.3999
- "Measurement of separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope"
 - arXiv: 1109.0521
- "Constraints on the Galactic Halo Dark Matter from Fermi-LAT Diffuse Measurements"
 - arXiv: 1205.6474
- "Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope"
 - arXiv: 1108.3546
- "Anisotropies in the diffuse gamma-ray background measured by the Fermi LAT"
 - arXiv: 1202.2856
- "Fermi LAT Search for Dark Matter in Gamma-ray Lines and the Inclusive Photon Spectrum"
 - arXiv: 1205.2739
- Profumo and Linden, "Gamma-ray Lines in the Fermi Data: is it a Bubble?"
 - arXiv: 1204.6047